
 
2011 ACM ICPC SOUTH CENTRAL USA REGIONAL

PROGRAMMING CONTEST

6 - Symbolic Logic Mechanization
Marvin, the robot with a brain the size of a planet, followed some . . . markedly less successful robots as the
product line developed. One such was Monroe, the robot — except, to help him recognize his name, he was
referred to as Moe. He is sufficiently mentally challenged that he needs external assistance to handle
symbolic logic.

Polish notation is the prefix symbolic logic notation developed by Jan Lukasiewicz (1929). [Hence postfix
expressions are referred to as being in Reverse Polish Notation — RPN.] The notation developed by
Łukasiewicz (referred to as PN below) uses upper-case letters for the logic operators and lower-case letters
for logic variables (which can only be true or false). Since prefix notation is self-grouping, there is no need
for precedence, associativity, or parentheses, unlike infix notation. In the following table the PN operator is
shown, followed by its operation. Operators not having exactly equivalent C/C++/Java operators are shown
in the truth table (using 1 for true and 0 for false). [The operator J is not found in Łukasiewicz’ original work
but is included from A.N.Prior’s treatment.]

PN Operator Operation

Cpq conditional

Np not

Kpq and

Apq (inclusive) or

Dpq nand

Epq equivalence

Jpq exclusive or

Truth Tables

p q Cpq Dpq Epq

0 0 1 1 1

0 1 1 1 0

1 0 0 1 0

1 1 1 0 1

For every combination of PN operators and variables, an expression is a “well-formed formula” (WFF) if and
only if it is a variable or it is a PN operator followed by the requisite number of operands (WFF instances). A
combination of symbols will fail to be a “well-formed formula” if it is composed of a WFF followed by
extraneous text, it uses an unrecognized character [upper-case character not in the above table or a non-
alphabetic character], or it has insufficient operands for its operators. For invalid expressions, report the first
error discovered in a left-to-right scan of the expression. For instance, immediately report an error on an
invalid character. If a valid WFF is followed by extraneous text, report that as the error, even if the
extraneous text has an invalid character.

In addition, every WFF can be categorized as a tautology (true for all possible variable values), a
contradiction (false for all possible variable values), or a contingent expression (true for some variable
values, false for other variable values).

The simplest contingent expression is simply “p”, true when p is true, false when p is false. One very simple
contradiction is “KpNp”, both p and not-p are true. Similarly, one very simple tautology is “ApNp”, either p
is true or not-p is true. For a more complex tautology, one expression of De Morgan’s Law is
“EDpqANpNq”.



Input

Your program is to accept lines until it receives an empty character string. Each line will contain only
alphanumeric characters (no spaces or punctuation) that are to be parsed as potential “WFFs”. Each line will
contain fewer than 256 characters and will use at most 10 variables. There will be at most 32 non-blank lines
before the terminating blank line.

Output

For each line read in, echo it back, followed by its correctness as a WFF, followed (if a WFF) with its
category (tautology, contradiction, or contingent). In processing an input line, immediately terminate and
report the line as not a WFF if you encounter an unrecognized operator (even though it may fail to be well-
formed in another way as well). If it has extraneous text following the WFF, report it as incorrect. If it has
insufficient operands, report that. Use exactly the format shown in the Sample Output below.

Sample Input Sample Output

q
Cp
Cpq
A01
Cpqr
ANpp
KNpp
Qad
CKNppq
JDpqANpNq
CDpwANpNq
EDpqANpNq
KCDpqANpNqCANpNqDpq
[this is an empty line]

q is valid: contingent
Cp is invalid: insufficient operands 
Cpq is valid: contingent
A01 is invalid: invalid character
Cpqr is invalid: extraneous text
ANpp is valid: tautology
KNpp is valid: contradiction
Qad is invalid: invalid character 
CKNppq is valid: tautology
JDpqANpNq is valid: contradiction 
CDpwANpNq is valid: contingent 
EDpqANpNq is valid: tautology 
KCDpqANpNqCANpNqDpq is valid: tautology

The statements and opinions included in these pages are those of the Hosts of the ACM ICPC South Central USA Regional Programming Contest only. Any statements and opinions included
in these pages are not those of Louisiana State University or the LSU Board of Supervisors. 

© 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 ACM ICPC South Central USA Regional Programming Contest


